3.1063 \(\int \frac{x^{7/2}}{a+b x^2+c x^4} \, dx\)

Optimal. Leaf size=385 \[ \frac{\left (\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}+b\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} c^{5/4} \left (-\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} c^{5/4} \left (\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{\left (\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}+b\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} c^{5/4} \left (-\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} c^{5/4} \left (\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{2 \sqrt{x}}{c} \]

[Out]

(2*Sqrt[x])/c + ((b + (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)*S
qrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(1/4)*c^(5/4)*(-b - Sqrt[b^2 - 4*a*c
])^(3/4)) + ((b - (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)*Sqrt[
x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(1/4)*c^(5/4)*(-b + Sqrt[b^2 - 4*a*c])^(
3/4)) + ((b + (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])
/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(1/4)*c^(5/4)*(-b - Sqrt[b^2 - 4*a*c])^(3/4
)) + ((b - (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-
b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(1/4)*c^(5/4)*(-b + Sqrt[b^2 - 4*a*c])^(3/4))

_______________________________________________________________________________________

Rubi [A]  time = 1.58393, antiderivative size = 385, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 6, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.3 \[ \frac{\left (\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}+b\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} c^{5/4} \left (-\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} c^{5/4} \left (\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{\left (\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}+b\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} c^{5/4} \left (-\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{\sqrt [4]{2} c^{5/4} \left (\sqrt{b^2-4 a c}-b\right )^{3/4}}+\frac{2 \sqrt{x}}{c} \]

Antiderivative was successfully verified.

[In]  Int[x^(7/2)/(a + b*x^2 + c*x^4),x]

[Out]

(2*Sqrt[x])/c + ((b + (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)*S
qrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(1/4)*c^(5/4)*(-b - Sqrt[b^2 - 4*a*c
])^(3/4)) + ((b - (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)*Sqrt[
x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(1/4)*c^(5/4)*(-b + Sqrt[b^2 - 4*a*c])^(
3/4)) + ((b + (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])
/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(1/4)*c^(5/4)*(-b - Sqrt[b^2 - 4*a*c])^(3/4
)) + ((b - (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-
b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(1/4)*c^(5/4)*(-b + Sqrt[b^2 - 4*a*c])^(3/4))

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 161.23, size = 401, normalized size = 1.04 \[ \frac{2 \sqrt{x}}{c} - \frac{2^{\frac{3}{4}} \left (- 2 a c + b^{2} - b \sqrt{- 4 a c + b^{2}}\right ) \operatorname{atan}{\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{- b + \sqrt{- 4 a c + b^{2}}}} \right )}}{2 c^{\frac{5}{4}} \left (- b + \sqrt{- 4 a c + b^{2}}\right )^{\frac{3}{4}} \sqrt{- 4 a c + b^{2}}} - \frac{2^{\frac{3}{4}} \left (- 2 a c + b^{2} - b \sqrt{- 4 a c + b^{2}}\right ) \operatorname{atanh}{\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{- b + \sqrt{- 4 a c + b^{2}}}} \right )}}{2 c^{\frac{5}{4}} \left (- b + \sqrt{- 4 a c + b^{2}}\right )^{\frac{3}{4}} \sqrt{- 4 a c + b^{2}}} + \frac{2^{\frac{3}{4}} \left (- 2 a c + b^{2} + b \sqrt{- 4 a c + b^{2}}\right ) \operatorname{atan}{\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{- b - \sqrt{- 4 a c + b^{2}}}} \right )}}{2 c^{\frac{5}{4}} \left (- b - \sqrt{- 4 a c + b^{2}}\right )^{\frac{3}{4}} \sqrt{- 4 a c + b^{2}}} + \frac{2^{\frac{3}{4}} \left (- 2 a c + b^{2} + b \sqrt{- 4 a c + b^{2}}\right ) \operatorname{atanh}{\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{- b - \sqrt{- 4 a c + b^{2}}}} \right )}}{2 c^{\frac{5}{4}} \left (- b - \sqrt{- 4 a c + b^{2}}\right )^{\frac{3}{4}} \sqrt{- 4 a c + b^{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x**(7/2)/(c*x**4+b*x**2+a),x)

[Out]

2*sqrt(x)/c - 2**(3/4)*(-2*a*c + b**2 - b*sqrt(-4*a*c + b**2))*atan(2**(1/4)*c**
(1/4)*sqrt(x)/(-b + sqrt(-4*a*c + b**2))**(1/4))/(2*c**(5/4)*(-b + sqrt(-4*a*c +
 b**2))**(3/4)*sqrt(-4*a*c + b**2)) - 2**(3/4)*(-2*a*c + b**2 - b*sqrt(-4*a*c +
b**2))*atanh(2**(1/4)*c**(1/4)*sqrt(x)/(-b + sqrt(-4*a*c + b**2))**(1/4))/(2*c**
(5/4)*(-b + sqrt(-4*a*c + b**2))**(3/4)*sqrt(-4*a*c + b**2)) + 2**(3/4)*(-2*a*c
+ b**2 + b*sqrt(-4*a*c + b**2))*atan(2**(1/4)*c**(1/4)*sqrt(x)/(-b - sqrt(-4*a*c
 + b**2))**(1/4))/(2*c**(5/4)*(-b - sqrt(-4*a*c + b**2))**(3/4)*sqrt(-4*a*c + b*
*2)) + 2**(3/4)*(-2*a*c + b**2 + b*sqrt(-4*a*c + b**2))*atanh(2**(1/4)*c**(1/4)*
sqrt(x)/(-b - sqrt(-4*a*c + b**2))**(1/4))/(2*c**(5/4)*(-b - sqrt(-4*a*c + b**2)
)**(3/4)*sqrt(-4*a*c + b**2))

_______________________________________________________________________________________

Mathematica [C]  time = 0.0605926, size = 80, normalized size = 0.21 \[ -\frac{\text{RootSum}\left [\text{$\#$1}^8 c+\text{$\#$1}^4 b+a\&,\frac{\text{$\#$1}^4 b \log \left (\sqrt{x}-\text{$\#$1}\right )+a \log \left (\sqrt{x}-\text{$\#$1}\right )}{2 \text{$\#$1}^7 c+\text{$\#$1}^3 b}\&\right ]-4 \sqrt{x}}{2 c} \]

Antiderivative was successfully verified.

[In]  Integrate[x^(7/2)/(a + b*x^2 + c*x^4),x]

[Out]

-(-4*Sqrt[x] + RootSum[a + b*#1^4 + c*#1^8 & , (a*Log[Sqrt[x] - #1] + b*Log[Sqrt
[x] - #1]*#1^4)/(b*#1^3 + 2*c*#1^7) & ])/(2*c)

_______________________________________________________________________________________

Maple [C]  time = 0.013, size = 64, normalized size = 0.2 \[ 2\,{\frac{\sqrt{x}}{c}}+{\frac{1}{2\,c}\sum _{{\it \_R}={\it RootOf} \left ({{\it \_Z}}^{8}c+{{\it \_Z}}^{4}b+a \right ) }{\frac{-{{\it \_R}}^{4}b-a}{2\,{{\it \_R}}^{7}c+{{\it \_R}}^{3}b}\ln \left ( \sqrt{x}-{\it \_R} \right ) }} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x^(7/2)/(c*x^4+b*x^2+a),x)

[Out]

2*x^(1/2)/c+1/2/c*sum((-_R^4*b-a)/(2*_R^7*c+_R^3*b)*ln(x^(1/2)-_R),_R=RootOf(_Z^
8*c+_Z^4*b+a))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x^{\frac{7}{2}}}{c x^{4} + b x^{2} + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^(7/2)/(c*x^4 + b*x^2 + a),x, algorithm="maxima")

[Out]

integrate(x^(7/2)/(c*x^4 + b*x^2 + a), x)

_______________________________________________________________________________________

Fricas [A]  time = 0.490443, size = 5210, normalized size = 13.53 \[ \text{result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^(7/2)/(c*x^4 + b*x^2 + a),x, algorithm="fricas")

[Out]

1/2*(4*c*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (b^4*c^5 - 8*a*b^
2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4
*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*
a*b^2*c^6 + 16*a^2*c^7)))*arctan(-(b^6 - 7*a*b^4*c + 13*a^2*b^2*c^2 - 4*a^3*c^3
- (b^5*c^5 - 8*a*b^3*c^6 + 16*a^2*b*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2
- 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*
c^13)))*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (b^4*c^5 - 8*a*b^2
*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*
c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a
*b^2*c^6 + 16*a^2*c^7)))/(2*(a*b^4 - 3*a^2*b^2*c + a^3*c^2)*sqrt(x) + sqrt(4*(a^
2*b^8 - 6*a^3*b^6*c + 11*a^4*b^4*c^2 - 6*a^5*b^2*c^3 + a^6*c^4)*x + 2*sqrt(1/2)*
(b^12 - 12*a*b^10*c + 55*a^2*b^8*c^2 - 120*a^3*b^6*c^3 + 125*a^4*b^4*c^4 - 54*a^
5*b^2*c^5 + 8*a^6*c^6 - (b^11*c^5 - 15*a*b^9*c^6 + 85*a^2*b^7*c^7 - 220*a^3*b^5*
c^8 + 240*a^4*b^3*c^9 - 64*a^5*b*c^10)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 -
6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^
13)))*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7
)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 -
12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a^2
*c^7))))) - 4*c*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (b^4*c^5 -
 8*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^
3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c
^5 - 8*a*b^2*c^6 + 16*a^2*c^7)))*arctan((b^6 - 7*a*b^4*c + 13*a^2*b^2*c^2 - 4*a^
3*c^3 + (b^5*c^5 - 8*a*b^3*c^6 + 16*a^2*b*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^
4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 6
4*a^3*c^13)))*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (b^4*c^5 - 8
*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3
+ a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5
 - 8*a*b^2*c^6 + 16*a^2*c^7)))/(2*(a*b^4 - 3*a^2*b^2*c + a^3*c^2)*sqrt(x) + sqrt
(4*(a^2*b^8 - 6*a^3*b^6*c + 11*a^4*b^4*c^2 - 6*a^5*b^2*c^3 + a^6*c^4)*x + 2*sqrt
(1/2)*(b^12 - 12*a*b^10*c + 55*a^2*b^8*c^2 - 120*a^3*b^6*c^3 + 125*a^4*b^4*c^4 -
 54*a^5*b^2*c^5 + 8*a^6*c^6 + (b^11*c^5 - 15*a*b^9*c^6 + 85*a^2*b^7*c^7 - 220*a^
3*b^5*c^8 + 240*a^4*b^3*c^9 - 64*a^5*b*c^10)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*
c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*
a^3*c^13)))*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (b^4*c^5 - 8*a*b^2*c^6 + 16*a
^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c
^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^6 +
16*a^2*c^7))))) + c*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (b^4*c
^5 - 8*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^
2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b
^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)))*log(2*(a*b^4 - 3*a^2*b^2*c + a^3*c^2)*sqrt(
x) + (b^6 - 7*a*b^4*c + 13*a^2*b^2*c^2 - 4*a^3*c^3 - (b^5*c^5 - 8*a*b^3*c^6 + 16
*a^2*b*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b
^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))*sqrt(sqrt(1/2)*sqrt(-
(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8
- 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^1
1 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)))) - c
*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (b^4*c^5 - 8*a*b^2*c^6 +
16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b
^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^
6 + 16*a^2*c^7)))*log(2*(a*b^4 - 3*a^2*b^2*c + a^3*c^2)*sqrt(x) - (b^6 - 7*a*b^4
*c + 13*a^2*b^2*c^2 - 4*a^3*c^3 - (b^5*c^5 - 8*a*b^3*c^6 + 16*a^2*b*c^7)*sqrt((b
^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*
c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c +
5*a^2*b*c^2 + (b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^
2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12
 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)))) + c*sqrt(sqrt(1/2)*sqr
t(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b
^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*
c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)))*l
og(2*(a*b^4 - 3*a^2*b^2*c + a^3*c^2)*sqrt(x) + (b^6 - 7*a*b^4*c + 13*a^2*b^2*c^2
 - 4*a^3*c^3 + (b^5*c^5 - 8*a*b^3*c^6 + 16*a^2*b*c^7)*sqrt((b^8 - 6*a*b^6*c + 11
*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c
^12 - 64*a^3*c^13)))*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (b^4*
c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b
^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(
b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)))) - c*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c
 + 5*a^2*b*c^2 - (b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11
*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c
^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c^6 + 16*a^2*c^7)))*log(2*(a*b^4 - 3*a^2
*b^2*c + a^3*c^2)*sqrt(x) - (b^6 - 7*a*b^4*c + 13*a^2*b^2*c^2 - 4*a^3*c^3 + (b^5
*c^5 - 8*a*b^3*c^6 + 16*a^2*b*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^
3*b^2*c^3 + a^4*c^4)/(b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13))
)*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (b^4*c^5 - 8*a*b^2*c^6 +
 16*a^2*c^7)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(
b^6*c^10 - 12*a*b^4*c^11 + 48*a^2*b^2*c^12 - 64*a^3*c^13)))/(b^4*c^5 - 8*a*b^2*c
^6 + 16*a^2*c^7)))) + 4*sqrt(x))/c

_______________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x**(7/2)/(c*x**4+b*x**2+a),x)

[Out]

Timed out

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x^{\frac{7}{2}}}{c x^{4} + b x^{2} + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^(7/2)/(c*x^4 + b*x^2 + a),x, algorithm="giac")

[Out]

integrate(x^(7/2)/(c*x^4 + b*x^2 + a), x)